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Abstract
Several static and dynamic properties of liquid magnesium near melting have been evaluated by
the orbital-free ab initio molecular dynamics method. The calculated static structure shows
good agreement with recent experimental data, including an asymmetric second peak in the
structure factor which has been linked to the existence of an important icosahedral short-range
order in the liquid. As for the dynamic structure, we obtain collective density excitations with
an associated dispersion relation which closely follows recent experimental results. Accurate
estimates have also been obtained for several transport coefficients.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Molecular dynamics (MD) methods are a powerful technique
to study the properties of liquid systems, and the last two
decades have witnessed a large spread of the application
of ab initio molecular dynamics methods (AIMD) based
on the density functional theory (DFT) [1]. This theory
allows calculation of the ground state electronic energy of
a collection of atoms, for given nuclear positions, and also
yields the forces on the nuclei via the Hellmann–Feynman
theorem. It enables us to perform MD simulations in which
the nuclear positions evolve according to classical mechanics
whereas the electronic subsystem follows adiabatically. Most
AIMD methods are based on the Kohn–Sham (KS) orbital
representation of the DFT (KS-AIMD methods), which
requires powerful computational resources, and this has
imposed severe restrictions on the size of the systems and
the simulation times. However, some of these constraints
can be alleviated by the so-called orbital-free ab initio
molecular dynamics (OF-AIMD) method, which by disposing
of the electronic orbitals of the KS formulation provides a
simulation method where the number of variables describing
the electronic state is greatly reduced, enabling the study
of larger samples (thousands of particles) and for longer
simulation times (tens of ps).

This paper reports an ab initio molecular dynamics
simulation on the static and dynamic properties of liquid
magnesium (l-Mg) at thermodynamic conditions near its triple
point. Mg is considered the simplest divalent metal. It
belongs to the group of the alkaline-earth metals which is
a group that has not attracted much attention, especially
regarding the experimental work, possibly because of technical
difficulties related to their high chemical reactivity and their
gas adsorption ability [2]. Indeed, only a few properties
have been measured, such as the static structure [3–5],
density [6], sound velocity [7], electrical resistivity [8] and
thermopower [9]. As a consequence, the theoretical work
on the alkaline earths has also lagged behind that on the
alkalis or the polyvalent metals. Recent experiments on
l-Mg have determined its structure factors, both static [5]
and dynamic [10]. It is precisely this recent availability of
new experimental data which has prompted us to perform
a comprehensive ab initio study of its static and dynamic
properties.

The static structure factor of l-Mg was first measured
by x-ray diffraction (XD) by Waseda [3, 4]; more recently,
new XD and neutron scattering (NS) experiments have been
performed aiming at a precise determination of the ion–valence
electron structure factor [5], following initial efforts by Takeda
et al [11]. Since neutrons scatter from nuclei and x-rays
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from electrons, the difference between the structure factors
measured with one or the other technique can provide some
information about the electron distribution around ions, in
particular for the valence electrons which are more delocalized
than the tightly bound core electrons. As the difference
between the structure factors is usually much smaller than their
magnitude, large error bars are often found, and to reduce
these uncertainties very precise measurements are required
which, by the way, are becoming marginally possible due to the
increased intensity of x-ray and neutron sources. Indeed, the
recent, and more precise, XD data exhibit some discrepancies
with respect to Waseda’s. In particular, the height of the
main peak of S(q) is larger and the second peak also adopts
an asymmetric form that departs from that predicted by the
hard-sphere (HS) model which, incidentally, could accurately
describe the shape of Waseda’s S(q). This specific shape of
the second peak of S(q) is similar to that found for several
transition metals (Ni, Fe, Ti, Zr) [12, 13], and has been related
to icosahedral (either ideal or distorted) short-range order that
increases upon supercooling [14, 15], providing a nucleation
barrier that inhibits crystallization [16]. Upon supercooling the
asymmetry of the second peak increases and in fact a second
subpeak develops. It is therefore interesting to analyse if this
type of behaviour also occurs in the case of l-Mg.

Experimental investigations on the dynamic structure of
l-Mg have been hampered by the high value of its adiabatic
sound velocity (≈4000 m s−1), which stands close to the
present limit of observability for inelastic neutron scattering
(INS) due to the kinematic restrictions of this technique.
However, these problems have been overcome by the use of
inelastic x-ray scattering (IXS), and Kawakita et al [10] have
recently used this technique to measure the dynamical structure
of l-Mg at T = 973 K (which is about 50 K above the
triple point). Specifically, the measurements by Kawakita
et al have investigated the wavevector regions 0.2 Å

−1 �
q � 3.11 Å

−1
obtaining several dynamical features already

observed in the liquid alkali metals, such as the existence
of collective excitations up to q-values around 0.5qp (where

qp = 2.40 Å
−1

is the main peak position of S(q)), which
exhibit a positive dispersion in the sound velocity with respect
to the hydrodynamic value.

It is worth noting that recently the dynamic structure of
liquid Fe, a system with icosahedral short-range order [12],
has been studied by Hosokawa et al [17]. They analysed
the results in terms of a theoretical model that includes three
decay channels for the collective modes (thermal, structural
and microscopic) and found some specific features of the
structural terms at low q that behave different from those found
in liquid alkali metals. This was tentatively attributed to the
type of short-range order present in liquid Fe, and therefore it
is interesting to study if such a behaviour is also observed in
liquid Mg.

Most theoretical studies on l-Mg have addressed its
thermodynamic and static structural properties, and the usual
approach has been to characterize the liquid system by effective
interatomic potentials constructed either empirically by fitting
to experimental data or derived from some approximate
theoretical model. Among those earliest semiempirical works,

we mention reference [18] which basically resorted to the
HS model with a packing fraction calculated within the
framework of a variational theory based on the Gibbs–
Bogoliubov inequality, to provide a fair estimate of the static
structure of l-Mg at melting. Hafner and Jank [19] have
followed a more fundamental approach to calculate some
static and electronic properties of l-Mg near melting. They
used an effective interatomic pair potential derived from the
optimized pseudopotentials of Harrison [20], whereas the static
structure was derived by classical molecular dynamics (CMD)
simulations. The structural results showed good agreement
with experiment and the calculated electronic density of states
was basically free-electron-like. González and co-workers
have used interatomic pair potentials derived from the neutral
pseudoatom model [21–23] to calculate several static and
dynamic properties of l-Mg. They used both CMD and liquid
state theories [22, 24], yielding results in good agreement with
the available experimental data. More recently, Bretonnet et al
[25] have used an interatomic pair potential derived from the
Fiolhais pseudopotential [26] along with CMD simulations to
study several structural and thermodynamic properties for the
alkali earths near melting.

Up to now, the only KS-AIMD calculation for l-Mg was
performed by de Wijs et al [27, 28] more than ten years ago
and it focused on the static and electronic properties for a
thermodynamic state near the triple point. The calculation used
90 particles, a separable non-conserving pseudopotential and
the local density approximation for the electronic exchange
and correlation energy. Anta et al [29] performed OF-
AIMD simulations of l-Mg which were focused on the static
structure only. Both ab initio studies have provided accurate
descriptions of the local liquid structure as compared to
the then available XD data of Waseda, as well as valuable
insights into the characteristics of the valence electronic
charge densities. However, these studies did not address
any dynamical properties. These were partially investigated
by González et al in an OF-AIMD study using only 205
particles [23], in which only a few properties were considered
mainly due to the lack of experimental data at that time.
The study of these dynamic properties is the main subject
of the present report which, to our knowledge, is the first
comprehensive ab initio study on the dynamical properties of
l-Mg.

2. Theory

A simple liquid metal is treated as a disordered array of N bare
ions with valence Z , enclosed in a volume V , and interacting
with Ne = N Z valence electrons through an electron–ion
potential v(r). The total potential energy of the system can be
written, within the Born–Oppenheimer approximation, as the
sum of the direct ion–ion Coulombic interaction energy and the
ground state energy of the electronic system under the external
potential created by the ions, Vext(�r , { �Rl}) = ∑N

i=1 v(|�r − �Ri |),

E({ �Rl}) =
∑

i> j

Z 2

| �Ri − �R j |
+ Eg[ρg(�r), Vext(�r , { �Rl})], (1)

where ρg(�r) is the ground state electronic density and �Rl

are the ionic positions. According to DFT, the ground state
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electronic density, ρg(�r), can be obtained by minimizing the
energy functional E[ρ], which can be written

E[ρ(�r)] = Ts[ρ] + EH[ρ] + Exc[ρ] + Eext[ρ] (2)

where the terms represent, respectively, the electronic kinetic
energy, Ts[ρ], of a non-interacting system of density ρ(�r),
the classical electrostatic energy (Hartree term), the exchange–
correlation energy, Exc[ρ], for which we have used the
generalized gradient approximation [30], and finally the
electron–ion interaction energy, Eext[ρ]. The electron–
ion potential has been characterized by a local ionic
pseudopotential, v(r), constructed within DFT [31].

In the KS formulation [1], Ts[ρ] is exactly evaluated
by using single-particle orbitals, which imposes huge
computational demands. This is ameliorated in the orbital-free
approach [1, 31, 32] by using an explicit albeit approximate
functional of the density for Ts[ρ]. We have used an average
density model [31] that includes the von Weizsäker term and a
Pauli term, Ts = TW + Tα,

TW[ρ(�r)] = 1
8

∫

d�r |∇ρ(�r)|2/ρ(�r), (3)

Tα = 3
10

∫

d�r ρ(�r)5/3−2α k̃(�r)2

k̃(�r) = (2k0
F)

3
∫

d�s k(�s)wα(2k0
F|�r − �s|),

(4)

where k(�r) = (3π2)1/3ρ(�r)α , k0
F is the Fermi wavevector for

mean electron density ρe = Ne/V , and wα(x) is a weight
function chosen so that both the linear response theory and
Thomas–Fermi limits are correctly recovered. Further details
are given in [31].

The local ionic pseudopotential, vps(r), describing the
ion–electron interaction has been constructed from first
principles by fitting, within the same Ts[ρ] functional, to
the displaced electronic density induced by an ion embedded
in a metallic medium as obtained in a KS-DFT calculation.
Further details are given in [31] and we just note that
the previous theoretical framework has already delivered an
accurate description of static and dynamic properties of several
bulk liquid metals and alloys [31, 33] as well as some liquid–
vapour interfaces [34].

OF-AIMD simulations have been performed for l-Mg at
a thermodynamic state near the triple point (T = 953 K).
We have considered 2000 ions in a cubic cell with periodic
boundary conditions and whose size was appropriate for an
ionic number density ρi = 0.038 29 Å

−3
[4]. Given the

ionic positions at time t , the electronic energy functional
is minimized with respect to ρ(�r) represented by a single
effective orbital, ψ(�r ), defined as ρ(�r) = ψ(�r)2. The orbital
is expanded in plane waves which are truncated at a cutoff
energy, Ecut = 13 Ryd. The energy minimization with respect
to the Fourier coefficients of the expansion is performed every
ionic time step by using a quenching method which results
in the ground state electronic density and energy. The forces
on the ions are obtained from the electronic ground state via
the Hellman–Feynman theorem, and the ionic positions and

velocities are updated by solving Newton’s equations, with the
Verlet leapfrog algorithm with a timestep of 2.5 × 10−3 ps. In
the simulations equilibration lasted 10 ps and the calculation of
properties was made averaging over 50 ps.

During the simulation, we have evaluated several liquid
static properties (pair distribution function, ion–ion and
ion–valence electron static structure factors) as well as
various dynamic properties, both single-particle ones (velocity
autocorrelation function, mean square displacement) and
collective ones (intermediate scattering functions, dynamic
structure factors, longitudinal and transverse currents). The
calculation of the time correlation functions (CFs) was
performed by taking time origins every five time steps. Several
CFs also have a dependence on the wavevectors q which, as
our system is isotropic, depend on q ≡ |q| only.

3. Results

3.1. Static properties

We have already mentioned that the experimental determina-
tion of the distribution of valence electrons around nuclei, as
quantified by the ion–valence electron structure factor, Sie(q),
is a very difficult task. Nevertheless, it is a rather simple mag-
nitude to compute in an ab initio simulation where the valence
electrons are treated explicitly. It is directly obtained from the
Fourier transform (FT) of the ion–valence electron distribution
function, which can be computed in terms of the ionic positions
and the selfconsistently obtained valence electron density. An-
other possible approach to a theoretical calculation of Sie(q)
is the superposition approximation, where one considers that
the system’s valence electron density is the sum of spherically
symmetric atomic-like valence electron densities attached to
each ion in the system. In the KS-AIMD simulations of de
Wijs et al [27, 28], it was shown that the superposition of the
valence electron densities of a free Mg atom leads to poor re-
sults when compared to the selfconsistent ones, as observed in
figure 1, reflecting the formation of bonds, metallic in this case.
The reproducibility of this type of behaviour of the electronic
properties by the (in principle) more approximate OF-AIMD
methods would underpin their capability to tackle appropri-
ately the electronic problem. Figure 1 depicts the OF-AIMD
results for Sie(q) which show a remarkable similarity with the
selfconsistent KS-AIMD result. Other OF-AIMD simulations
of l-Mg, albeit using a different kinetic energy functional and
a different pseudopotential [29], have also yielded good agree-
ment with the KS-AIMD results, as seen in the figure. Finally,
the Sie(q) obtained from the difference between the experimen-
tal NS and XD structure factors is also shown in figure 1. All
the previous theoretical approaches reproduce well the trends
in the experimental data and, in general, compare well with the
experiments.

The simulations provide a direct evaluation of both the
pair distribution function, g(r), and the static structure factor,
S(q). The position of the main peak of g(r) is customarily
identified with the average nearest neighbour distance, which
in the present OF-AIMD calculation stands at 3.10 Å, close to
the experimental value [4] of ≈3.09 Å. The number of nearest
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Figure 1. Ion–valence electron structure factor of l-Mg at 953 K.
Continuous line: present OF-AIMD simulations. Triangles and
circles: KS-AIMD simulation data from de Wijs et al [27, 28]
corresponding to the selfconsistent density and to the superposition
of free atom valence electron densities, respectively. Dashed line:
OF-AIMD simulation results from Anta et al [29]. Dash–dotted line:
experimental data of Tahara et al [5].

neighbours is obtained by integrating the radial distribution
function (RDF), 4πr 2ρig(r), up to a distance rm which is
usually identified as the position of the first minimum in either
the RDF or in g(r) [35, 36]. Both choices usually lead to rather
similar results, and in the present OF-AIMD based g(r) we
obtain that its first minimum is located at ≈4.35 Å whereas that
of the RDF is at ≈4.23 Å, which lead to coordination numbers
of ≈12.8 and 12.3 atoms/ions respectively.

The structure factor S(q) is plotted in figure 2 along
with the XD data of Waseda [4] and the new (XD and NS)
diffraction data of Tahara et al [5]. The OF-AIMD based
results coincide in every detail with the more recent data,
particularly with respect to the height of the main peak and the
asymmetric form of the second peak, as shown in the rightmost
inset of figure 2. The other inset shows that in the small q
region our results are closer to the new experiments than to the
older ones.

Extrapolation of S(q) to q → 0 allows an approximate
estimation of the isothermal compressibility, κT, by resorting
to the relation S(0) = ρkBT κT. A least squares fit of
S(q) = s0 + s2q2 to the calculated S(q) for q-values up to
0.6 Å

−1
yields the result S(0) = 0.023 ± 0.001 and therefore

a κT,OF−AIMD = 4.6 ± 0.3 (in 10−11 m2 N−1 units) for T =
953 K. We are unaware of any experimental measurement,
but a recent estimate [37], based on experimental data for
other thermodynamic magnitudes, suggests a value κT = 5.05.
Unfortunately, a check on its accuracy is precluded by the lack
of other estimates, either theoretical or experimental, for this
magnitude.

An asymmetric shape of the second peak of S(q) has
already observed experimentally for several liquid transition
metals and has been related to an important component of
icosahedral local order. A first indication of such a type of
short-range order is given by the positions of the maximum of
the second peak of S(q), q2, and its ‘shoulder’, q ′

2, as compared

Figure 2. Static structure factor of l-Mg at 953 K. Open circles:
experimental x-ray diffraction data from Waseda [4]. Triangles and
squares: experimental XD and NS data at 973 K from Tahara et al
[5]. Continuous line: OF-AIMD simulations. The left inset shows
the low q behaviour, with full circles denoting small q XD
measurements from Waseda. The right inset shows the second peak
region, where Waseda’s XD (Tahara’s NS) data have been displaced
downwards (upwards) by 0.2 units.

to the position of the main peak. The corresponding values
obtained for l-Mg are q2/qp = 1.79 and q ′

2/qp ≈ 1.97,
which are similar to those found for liquid Ti and Zr (1.76
and 1.92 respectively), or Ni (1.74 and 1.95), and not far
from those corresponding to an ideal icosahedral environment
in a curved space [38] of 1.71 and 2.04. A more detailed
picture of the local order can be achieved by a common
neighbour analysis of the system [39]. Each pair of neighbours
is characterized by four indices, the first one indicating if the
particles of the pair are first (1) or second (2) neighbours (i.e. if
their separation is smaller or larger than 4.23 Å in this case).
The second index indicates how many particles are common
first neighbours of both particles in the pair, and the third
index counts the number of first neighbour links among these
shared neighbours. The fourth index discerns among different
topologies (if they are feasible) that correspond to the same
three first indexes. The relative abundance of each type of
pairs can distinguish between different local structures like bcc,
fcc, hcp or icosahedral. For instance, the abundance of 1551
pairs (corresponding to a local pentagonal bipyramid) points
to a significant amount of ideal fivefold symmetry, as they
show up in a centred perfect icosahedron whereas distorted
icosahedra give rise to 1541 and 1431 pairs. Moreover, 1321
pairs appear in icosahedra too. So the sum of all these
types of pairs is a measure of total (ideal and/or distorted)
icosahedral short-range order. On the other hand, a local
fcc environment is characterized by a large number of 1421
pairs, while a local hcp environment leads to high similar
values of 1421 and 1422 pairs. Local bcc structure is finally
characterized by large and similar numbers of 1441 and 1661
pairs, while an increase in 1661 pairs together with 1551
ones indicates a more complex polytetrahedral arrangement
than icosahedra, in particular Frank–Kasper type polyhedra
with 13 or more neighbours. Table 1 shows the results of
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Table 1. Common neighbour analysis of the MD configurations of
l-Mg at 953 K compared with several local structures.

Pairs l-Mg hcp fcc bcc

1551 0.14 0.00 0.00 0.00
1541 0.18 0.00 0.00 0.00
1431 0.23 0.00 0.00 0.00
1321 0.06 0.00 0.00 0.00

1421 0.05 0.50 1.00 0.00
1422 0.10 0.50 0.00 0.00

1301 0.01 0.00 0.00 0.00
1311 0.08 0.00 0.00 0.00
1331 0.00 0.00 0.00 0.00

1441 0.03 0.00 0.00 0.57
1661 0.03 0.00 0.00 0.43

the common neighbour analysis applied to the configurations
generated in the OF-AIMD simulation run. Note that, in
contrast to similar calculations by Jakse et al [15] for liquid Ni
and Zr, we have not eliminated the thermal noise by finding
the inherent structure (due to the cost of performing such
optimization for a system with 2000 particles). Had we made
this optimization, the number of distorted features would have
diminished in favour of ideal ones. In this sense our analysis is
more directly comparable to that of Kim and Kelton [14] who
analysed experimental data of S(q) through a reverse Monte
Carlo procedure.

The fivefold symmetry dominates in l-Mg, as the sum of
perfect and defective icosahedral structures amounts to 60% of
the pairs, with the number of perfect ones smaller than those
distorted probably due to the thermal disorder present in our
calculations. There is also a 5–10% appearance of local hcp
environments which is the phase in which Mg crystallizes. The
amount of icosahedral short-range order is therefore smaller
than in liquid Ni (where the total amounts to ca 80%), but quite
similar to that in liquid Zr (around 60%) [15]. In this work we
have not addressed the detailed calculations of the structure
of undercooled l-Mg, but preliminary simulations down to
750 K show a development of a more pronounced shoulder
in the second peak of S(q) along with an increase both in the
number of total and ideal pairs related to icosahedral short-
range order (68%, almost half of them being 1551), together
with a reduction of hcp related pairs. This would signal a high
ability of l-Mg for supercooling which however has not been
studied experimentally so far, at least to our knowledge. Note
that this is the same behaviour as found in the liquid transition
metals mentioned above [14, 15].

3.2. Dynamic properties

3.2.1. Collective dynamics. The intermediate scattering
function, F(q, t), embodies the information concerning the
collective dynamics of density fluctuations over the length and
time scales. It is defined as

F(q, t) = 1

N

〈(
N∑

j=1

e−i�q· �R j (t+t0)

)(
N∑

l=1

ei�q· �Rl (t0)

)〉

, (5)

where N is the total number of particles and �R j (t) is the
position of the j th ion at time t . The time FT of the F(q, t)

Figure 3. Calculated normalized intermediate scattering functions,
F(q, t), at several q-values (Å

−1
) for l-Mg at T = 953 K.

into the frequency domain leads to the dynamic structure
factor, S(q, ω), which has experimental relevance because it
is directly related to the scattered intensity in the INS or IXS
experiments. Another important magnitude associated with the
density fluctuations is the current due to the overall motion of
the particles, i.e.

�j(q, t) =
N∑

j=1

�v j (t) exp[i�q · �R j (t)] (6)

which is usually split into a longitudinal component,
�jL(q, t), parallel to �q , and a transverse component, �jT(q, t),
perpendicular to �q . Therefrom, the longitudinal, CL(q, t), and
transverse, CT(q, t), current correlation functions are obtained
as

CL(q, t) = 〈�jL(q, t) · �j∗
L(q, 0)〉 (7)

CT(q, t) = 1
2 〈 �jT(q, t) · �j∗

T(q, 0)〉. (8)

The corresponding time FT gives the associated spectra,
CL(q, ω) and CT(q, ω) respectively, with CL(q, ω) =
ω2S(q, ω).

Figure 3 shows the OF-AIMD calculated F(q, t), for
several q-values. The F(q, t) exhibit an oscillatory behaviour
up to q ≈ (3/5)qp, with the amplitude of the oscillations being
stronger for the smaller q-values; indeed, this is the typical
behaviour found, by both computer simulations [31, 40–42]
and some theoretical models [43], for other simple liquid
metals near their triple point. However, at these small q-values
(q � 0.5qp) the corresponding F(q, t) show a weak diffusive
component and the oscillations are rather marked around zero.
The slow decay of F(q, t) at q ≈ 2.35 Å

−1
is due to the

so-called ‘de Gennes narrowing’ induced by the strong spatial
correlations appearing at those q-values around qp.

To extract additional information we have fitted the
OF-AIMD calculated F(q, t) to an analytical expression,
based on the generalized hydrodynamic approximation, which

5



J. Phys.: Condens. Matter 21 (2009) 115106 S Şengül et al

interpolates between the hydrodynamic (q → 0) and the
viscoelastic (accurate for q ∼ qp) model [44, 45], namely

F(q, t)

S(q)
= A exp(−at)+ B exp(−bt) cos (ω0t)

+ C exp(−bt) sin (ω0t). (9)

It has six q-dependent parameters and recovers the hydrody-
namic F(q, t) in the q → 0 limit, with the coefficients behav-
ing as

A → γ − 1

γ
, B → 1

γ
, C → d

γ
q, (10)

a ≡ DT(q) → DTq2, b ≡ 	(q) → 	q2,

ω0 → csq
(11)

where γ = Cp/Cv is the ratio of specific heats, cs is the
adiabatic sound velocity, 	 is the sound attenuation constant,
DT = κT/(ρiCp) is the thermal diffusivity, κT is the thermal
conductivity and d is a coefficient involving γ , 	, cs and
DT. The time FT of (9) gives the associated S(q, ω) whose
analytical expression comprises the sum of a quasielastic
Lorentzian peak and a pair of stretched Lorentzian inelastic
peaks; moreover, when approaching the hydrodynamic limit
they are changed into a diffusive peak at ω = 0 (whose width
is determined by DT) along with two inelastic, propagating
peaks centred at ω = ±csq and half-width at half-maximum
(HWHM) given by 	q2.

We have already mentioned that for small q values the
F(q, t) show oscillations around zero, with a time decay which
is ruled by the thermal diffusivity DT (first term in the rhs
of (9)). For a metallic system, DT has both electronic and
ionic contributions, with the former being much larger than
the latter. However, the analysis of several calculations of this
type [46] is consistent with incorporating in (9) only the part
of DT that is due to the ionic contribution. We have estimated
DT by fitting the OF-AIMD calculated F(q, t) corresponding
to the smallest q-values (q � 0.6 Å

−1
) to the analytical

expression (9). Within this q-range we have achieved a good
fitting, yielding a value DT ∼ 3.5(±1) × 10−3 cm2 s−1,
which is two orders of magnitude smaller than the experimental
value (which includes both ionic and electronic contributions)
DT ∼ 3.7 × 10−1 cm2 s−1 for l-Mg at melting [47]. We also
quote that estimates of the ionic contribution to DT in the liquid
alkali metals near melting [48] range from 20.0×10−3 cm2 s−1

(Li) to 3.0 × 10−3 cm2 s−1 (Cs). As DT rules the diffusive
behaviour of the F(q, t) at small q values, large DT values
imply a weak diffusive component which therefore is quickly
overtaken by the oscillatory parts of the F(q, t).

An alternative analysis of the data is provided through the
modelling of the second order memory function of F(q, t).
The hierarchy of memory functions is most easily introduced
by using Laplace transforms, f̃ (z) = ∫ ∞

0 f (t) exp(−zt) dt ,
so that the first, M(q, t), and second, N(q, t), order memory
functions of F(q, t) are defined by

F̃(q, z) = F0

z + M̃(q, z)
, M̃(q, z) = M0

z + Ñ (q, z)
.

(12)

The initial values of F(q, t) and M(q, t) are respectively
F0 = F(q, t = 0) = S(q) and M0 = M(q, t = 0) =
−F ′′(q, t = 0)/F(q, t = 0), where the prime denotes the time
derivative. Within this formalism the hydrodynamic model
corresponds to an N(q, t) given by the sum of an instantaneous
(Dirac-δ type) decay due to longitudinal viscosity and an
exponential one due to thermal diffusivity. This model
was generalized by substituting the viscous instantaneous
decay by a viscoelastic exponential decay, although it was
later found that two decay channels with different decay
rates termed structural (slowly decaying) and microscopic
(rapidly decaying) can give a better account of simulation
and experimental data [44]. So, in the more general model
N(q, t) is given as a sum of three-exponential functions
related to thermal, microscopic and structural relaxation. This
model has been used in the analysis of IXS experimental
measurements of the dynamic structure factor of several liquid
metals [49], including recently liquid Fe [17]. In these
studies the parameters related to thermal relaxation were taken
from experimental thermophysical properties. However, the
particular point to emphasize here is that in liquid Fe, as
opposed to the liquid alkali metals, the contribution of the
structural term to the kinematic longitudinal viscosity for
finite q increases markedly with decreasing q . Even so,
its contribution to the damping of the collective modes is
negligible, because the timescale of the propagating mode is
much shorter than the structural relaxation time, and therefore,
from its point of view, the structure can be considered as
frozen.

Taking into account the fact that the Laplace transform
of an exponential function a exp(−bt) is a/(z + b) and the
structure of the hierarchy of memory functions it becomes easy
to realize that if N(q, t) is given by a sum of n exponentials,
then M(q, t) will be a sum of n + 1 exponentials and F(q, t) a
sum of n + 2 exponentials, which could however be either real
or appear in complex conjugate pairs, thus including products
of exponential functions and sines and cosines.

From the OF-AIMD results for F(q, t) we have found
that the corresponding second order memory function is well
described by using only two exponential functions,

N(q, t) = as(q) exp[−t/τs(q)] + a f (q) exp[−t/τ f (q)],
(13)

i.e. a slowly decaying term and a rapidly decaying one.
Correspondingly, M(q, t) is given by a sum of one real and
one complex conjugate pair of exponentials, and F(q, t) by
two real and one complex conjugate pair of exponentials.

From the fits to this model, which give similar accuracy
to the ones in terms of the generalized hydrodynamic model,
we have evaluated the q-dependence of the amplitudes and
relaxation times involved. In figure 4 we plot the magnitudes
of the terms as(q)τs(q)/q2 and a f (q)τ f (q)/q2, and we can
observe a large increase in the slow contribution for small
q . This behaviour is similar to that found in liquid Fe as
analysed by Hosokawa et al from their experiments [17], and
is in contrast to the behaviour found in several liquid alkali
metals. This supports the idea that such an increase at low q
may be related to the icosahedral short-range order present in
both liquid Fe and Mg.
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Figure 4. Values of ai (q)τi (q)/q2 for the slowly decaying (circles)
and rapidly decaying (triangles) terms of N(q, t).

Figure 5. Dynamic structure factor, S(q, ω), at several q values, for
l-Mg at T = 953 K. Full circles: experimental IXS data at
973 K [10]. Full and dashed lines: AIMD results for
q = 0.34, 0.61, 0.82 and 1.36 Å

−1
, after and before convolution with

the experimental resolution function respectively.

The S(q, ω) has been calculated by a time FT of the
F(q, t) and figures 5 and 6 depict several S(q, ω) for a
representative range of wavevectors. Up to q ≈ (3/5)qp, the
S(q, ω) show well defined side peaks indicative of collective
density excitations. Parenthetically we mention that the
previous 205-particle OF-AIMD results by González et al
[23] for those q values common with the present ones are
quite similar, although the height of the quasielastic peak
is now somewhat enhanced. A proper comparison with the
measured IXS data [10] requires the prior convolution of the
OF-AIMD calculated S(q, ω) with the experimental resolution
function [10] as well as the inclusion of the detailed balance
factor [44], even though this latter contribution has a negligible
influence. On the other hand, the convolution with the
experimental resolution function has the effect of diminishing
the contact (ω = 0) value as well as lowering and widening
the side peaks. This is shown in figures 5 and 6 which depict
the modified S(q, ω) which now show a better agreement with
the experimental IXS data [10]. However, we notice that for
small q values our calculated S(q, ω) still underestimate the
quasielastic contribution.

Figure 6. The same as in the previous graph but for
q = 1.89, 2.36, 2.66 and 3.12 Å

−1
.

Figure 7. Dispersion relation for l-Mg at T = 953 K. Open circles:
peak positions, ωm(q), from the calculated S(q, ω). Open squares:
peak positions, ωl(q), from the maxima of the calculated
longitudinal current, Cl(q, ω). Full circles: experimental ωl(q) at
T = 973 K from Kawakita et al [10]. Full line: linear dispersion
with the hydrodynamic sound velocity, v = 4050 m s−1.

From the positions of the side peaks, ωm(q), the dispersion
relation of the density fluctuations has been obtained and is
depicted in figure 7 along with ωl(q), which is the dispersion
relation derived from the maxima of the longitudinal current
correlation function, Cl(q, ω) = ω2S(q, ω). The figure also
includes the experimental ωl(q) data of Kawakita et al [10] at
T = 973 K, as well as a line representing the dispersion of the
hydrodynamic sound, whose slope gives the experimental [50]
bulk adiabatic sound velocity cs = 4050 m s−1 at T = 953 K.

In the hydrodynamic region, the slope of the dispersion
relation curve gives a q-dependent adiabatic sound velocity,
cs(q), which in the limit q → 0 reduces to the bulk
adiabatic sound velocity. Using the smallest three q-points
of our calculated ωm(q), we have performed a linear fitting
obtaining an estimate for the bulk adiabatic sound velocity
cs = 4200(±150) m s−1 at T = 953 K. We also notice
that the experimental dispersion relation data exhibit a positive
dispersion, i.e. an increase of ω(q) with respect to the values
predicted by the hydrodynamic adiabatic speed of sound, with
a maximum located at q ≈ 0.6 Å

−1
and which amounts

7
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Figure 8. Full (open) diamonds with error lines: experimental
(calculated) values for the HWHM, 	(q), of the inelastic peaks in
l-Mg at T = 953 K.

to ≈8%. A similar magnitude of positive dispersion is
also predicted by our calculated dispersion relations. We
recall that the positive dispersion effect has already been
experimentally found in several liquid metals such as the liquid
alkali metals [51–53], Al [51] and Hg [54].

Another magnitude characterizing the collective density
excitations is the HWHM of the inelastic peak, 	(q), which
provides information on the lifetimes of the excitations.
Figure 8 depicts the experimental data [10] for 	(q), which
at small q values follow a quadratic law (hydrodynamic limit)
but progressively depart from it as q increases. The figure
also includes the calculated 	(q) obtained by fitting the OF-
AIMD F(q, t) to the analytical expression given by (9); this
method was followed in order to disentangle the different
contributions to the F(q, t). In these calculations we find
that in the first quasi-Brillouin zone, namely q-values up to
qp/2 ≈ 1.2 Å

−1
, the ratio 	(q)/ωl(q) varies between 0.18 and

0.32. For comparison, we mention that for a similar q-range
the corresponding ratio varied within the interval (0.03–0.19)
in l-Cs and (0.12–0.23) in l-Ga.

Returning to the two-exponential model for N(q, t)
(equation (13)) it is interesting to disentangle which of the two
terms is mostly responsible for the damping of the propagating
mode in S(q, ω). In figure 9 we show the products of the
propagating frequency and the two relaxation times. It is
clear that the long relaxation time is much larger than the
typical time associated with the sound mode, leading to values
of ωlτ around 10. This means that in the timescale of the
density fluctuations the structure appears as frozen and hardly
contributes to their damping. It is only for much smaller
frequencies that the product becomes close to unity, and this
means that a large part of the quasielastic peak in S(q, ω) is
driven by this term. In contrast, the shorter relaxation time
gives ωlτs values around unity, so that the fast term becomes
responsible for the features of the inelastic peak.

These arguments can be reinforced by considering the
explicit analytic expression of S(q, ω) obtained from the
model through the relation S(q, ω) = Re[F̃(q, z = iω)]/π .
This leads to a rational function of ω with a denominator of
degree eight and a numerator of second degree. Moreover, the
numerator is given as a linear combination of the amplitudes of
the exponentials of N(q, t), so that S(q, ω) can be separated

Figure 9. Products of the propagating frequency and each of the two
relaxation times. Circles: slow term. Triangles: fast term.

Figure 10. S(q, ω) for q = 1.04 Å
−1

obtained from the
two-exponential model for N(q, t) (full line) along with its two
contributions proportional to the strength of each exponential.
Circles: slow term. Triangles: fast term.

as a sum of contributions proportional to the strengths of each
of the decaying channels. Such a decomposition is shown in
figure 10 for q = 1.04 Å

−1
, and reveals that the inelastic peak

is almost exclusively obtained from the fast term while the slow
one contributes only to the quasielastic line.

The transverse current correlation function, Ct (q, t), is
not associated with any measurable magnitude and can only
be determined by means of computer simulations. It provides
information on the shear modes and its shape evolves from
a Gaussian, in both q and t , at the free-particle (q → ∞)
limit, towards a Gaussian in q and an exponential in t at the
hydrodynamic limit (q → 0), i.e.

Ct (q → 0, t) = 1

βm
e−q2η|t|/mρ, (14)

where η is the shear viscosity coefficient, β = (kBT )−1 is
the inverse of the temperature times the Boltzmann constant
and m is the atomic mass. Whereas at both limits the
corresponding Ct (q, t) take positive values for all times,
at intermediate q-values it may show a more complicated
behaviour, including well defined oscillations within a limited
q-range [31, 44, 45]. This is shown in figure 11 where we have
depicted the calculated OF-AIMD results for several q-values.
Notice that at the smallest q-value allowed by the simulation

8
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Figure 11. OF-AIMD transverse current correlation function,
Ct(q, t), and its spectra, Ct(q, ω), at several q-values (in Å

−1
) for

liquid Mg at T = 953 K.

(q = 0.168 Å
−1 ≈ 0.07qp) the corresponding Ct (q, t)

already takes negative values, which by (14) means that it
is already beyond the hydrodynamic regime. The associated
spectrum, Ct (q, ω), is plotted in figure 11 and shows, for some
intermediate q-range, an inelastic peak at nonzero frequency.
This peak, which reflects the propagation of shear waves in
the liquid, already exists at the smallest value reached by the
simulation and remains up to q ≈ 2.5qp. The associated peak
frequency increases with q , takes a maximum value at q ≈ qp,
and then decreases with increasing q while the corresponding
Ct (q, ω) evolves towards a Gaussian shape. Indeed, a similar
behaviour has already been reported for the alkali metals
where the inelastic peak appears for q � 0.07qp [44]. From
the position of the maximum in the Ct(q, ω) a dispersion
relation for the transverse modes, ωt (q), can be obtained. We
already mentioned that the q-value from where shear waves
are supported (qt ) is smaller than the smallest value reached by
the simulation. Assuming a linear dispersion in the vicinity
of qt , i.e. ωt (q) ∝ ct(q − qt) where ct is the transverse
velocity of sound, we obtain (using the smallest four q-values
attained in the simulation) the following estimates: qt ≈
0.135 Å

−1 ≈ 0.055qp and ct ≈ 2310 m s−1, much smaller
than the longitudinal sound velocity.

From the calculated Ct (q, t), we can estimate the shear
viscosity coefficient, η, as follows [31, 55, 56]. The memory
function representation of the Ct (q, t),

C̃t(q, z) = 1

βm

[

z + q2

ρm
η̃(q, z)

]−1

, (15)

where the tilde denotes the Laplace transform, introduces a
generalized shear viscosity coefficient, η̃(q, z). The area under
the normalized Ct (q, t) gives βmC̃t(q, z = 0) wherefrom
values for η̃(q, z = 0) can be obtained and when extrapolated
to q = 0 give the usual shear viscosity coefficient, η. The
present OF-AIMD simulations give η = 1.35 ± 0.15 GPa ps,
whereas the available experimental data [57] at melting are
ηexp = 1.31 GPa ps which when extrapolated to T = 953 K
gives an estimate ηexp ≈ 1.16 GPa ps.

Figure 12. Normalized velocity autocorrelation function, Z(t), of
l-Mg at 953 K. The inset represents its power spectrum Z(ω).

3.2.2. Single-particle dynamics. The single-particle dynamic
behaviour in liquid systems is usually analysed through the
velocity autocorrelation function (VACF) of a tagged ion in the
fluid, Z(t), defined as

Z(t) = 〈�v1(t)�v1(0)〉/〈v2
1〉 (16)

which stands for the normalized VACF. The calculated Z(t) is
depicted in figure 12 and shows the usual shape characteristic
of high density systems [31, 44] (i.e. the simple liquid
metals near melting), which can be explained in terms
of the so-called ‘cage effect’, namely, a tagged particle
is enclosed in a cage formed by its adjacent neighbours.
The Z(t) exhibits an oscillatory behaviour with a distinct
negative minimum at ≈0.1 ps followed by quickly decaying
oscillations. Interestingly, a very similar shape with a
minimum located at practically the same position is also
displayed by the VACFs calculated by CMD [24, 25] and the
KS-AIMD calculations of de Wijs et al [28].

The time FT of the Z(t) gives its associated power
spectrum Z(ω) which is also depicted in figure 12. It exhibits
a broad maximum that reflects the oscillatory motions of the
atoms/ions in the cage of their neighbours along with an
incipient side peak shifted towards the higher frequencies,
which has been previously related to the softness of the
interatomic potential [58].

An estimate of the frequency at which a given atom/ion is
vibrating within the cage [44, 45] can be achieved by a short
time expansion Z(t) = 1 − ω2

Et2/2 . . ., where ωE is the so-
called ‘Einstein frequency’ of the system. A short time fitting
of our calculated Z(t) gives ωE ∼ 30.0 ps−1 which is very
close to the estimate ωE ∼ 30.5 ps−1 obtained by Kawakita
et al [10] from their data on the q-dependent sound velocity.
Finally, we mention that the CMD simulations by Alemany
et al [24] yielded ωE ∼ 31.7 ps−1.

The selfdiffusion coefficient, D, is readily obtained from
either the time integral of Z(t) or from the slope of the mean
square displacement δR2(t) ≡ 〈| �R1(t) − �R1(0)|2〉 of a tagged
ion in the fluid, as follows:

D = 1

βm

∫ ∞

0
Z(t) dt; D = lim

t→∞ δR2(t)/6t . (17)

9
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Both routes for D lead to practically the same value,
namely DOF−AIMD = 0.51 Å

2
ps−1; unfortunately, no ex-

perimental data are available for comparison. Nevertheless,
we mention that, using experimental data on other thermody-
namic magnitudes, it has been hinted [50, 59] that Dexp =
0.56–0.65 Å

2
ps−1 for l-Mg at T = 923 K. On the other hand,

the CMD simulations of Alemany et al [24] yielded DCMD =
0.665 Å

2
ps−1 for l-Mg at T = 953 K, whereas the KS-AIMD

of de Wijs et al [28] gave DKS−AIMD = 0.50 Å
2

ps−1 for l-Mg
at T = 1000 K.

Within the context of the Brownian motion of a
macroscopic particle of diameter d in a liquid of shear viscosity
η, its selfdiffusion coefficient D is related to η through the
Stokes–Einstein (SE) relation ηD = kBT/(2πd). Although
approximate when applied to atoms/ions, this relation has
sometimes been used to estimate η by identifying d with the
main peak position of the g(r). The present calculations give
d = 3.10 Å, which combined with the value DOF−AIMD =
0.51 Å

2
ps−1 leads to η = 1.33 GPa ps, which is rather close

to the OF-AIMD estimate and provides further reliability on
the SE relation.

4. Conclusions

We have evaluated several static and dynamic properties of l-
Mg close to the triple point. This has been done by using
the orbital-free ab initio molecular dynamics method combined
with a first-principles local pseudopotential constructed within
the same framework.

Previous theoretical and simulation studies had already
provided good descriptions of the local liquid structure and
even some single-particle dynamical properties. Moreover, the
ab initio studies of de Wijs et al [27, 28] and Anta et al [29]
also provided some valuable insights into the properties of the
valence electronic charge densities. However, the collective
dynamical properties had only been partially addressed [23]
and this has precisely been the main topic of the present report
which, to our knowledge, is the first comprehensive ab initio
study on the dynamical properties of l-Mg.

The intermediate scattering functions, F(q, t), have at
small q values a weak diffusive component and strong
oscillations around zero. The associated dynamic structure
factors, S(q, ω), show collective density excitations lasting
for a similar range of q/qp values as found for simple
liquid metals near melting. There is a reasonable agreement
with the experimental S(q, ω), although our calculations
slightly overestimate the peak positions and for the smaller
q values there is some underestimation for the intensity of
the quasielastic contribution to the S(q, ω). Moreover, the
calculated dispersion relation closely follows the existing
experimental data.

The transverse current correlation functions, Ct (q, t),
exhibit clear oscillations around zero, and the associated
spectra, Ct (q, ω), have inelastic peaks which reflect the
presence of shear waves in the liquid. The calculated transport
coefficients, namely selfdiffusion and shear viscosity, show
a fair agreement with experiment and/or other ab initio
calculations.

It is worth mentioning the accurate description of the
valence electron–ion structure factor provided by the OF-
AIMD method. Indeed, its results are practically coincident
with those of the previous KS-AIMD simulations, which
underlines the capability of the OF-AIMD method to deal
correctly with the electronic problem.

The calculated static structure closely agrees with recent
experimental data confirming an asymmetric second peak in
the structure factor that is related to icosahedral short-range
order of a degree similar to that of some transition metals
like Zr, that is suggested to increase upon supercooling. This
unveils a high potential of supercooling in l-Mg that could
stimulate new experimental work. This type of ordering is
accompanied by a large increase in the contribution of slow
relaxation modes to the q-dependent generalized kinematic
longitudinal viscosity for low q , in agreement with a recent
analysis of experimental data for liquid Fe [17], so that both
phenomena could indeed be related to each other. Further
data along these lines would be helpful in clarifying this
relationship. The overall good description achieved for several
static and dynamic properties of l-Mg suggests that the OF-
AIMD method may also reliably describe the undercooled state
and address the natural question of how the short-range order
and dynamic properties evolve in this undercooled region.
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